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Abstract

This paper is devoted to studying difference indices of quasi-regular difference
algebraic systems. We give the definition of difference indices through a family
of pseudo-Jacobian matrices. Some properties of difference indices are proved.
In particular, a Jacobi-type upper bound for the sum of the difference index and
the order is given. As applications of difference indices, an upper bound of the
Hilbert-Levin regularity and an upper bound of the order for the difference ideal
membership problem are deduced.

1. Introduction

The main notion we consider in this paper is difference indices.
Roughly speaking, the difference index of a difference algebraic system is
the order of transform we need to apply to the system to obtain the
relations up to a prescribed order that all the solutions must verify. In
some sense, difference indices can be regarded as a measure of the

complexity of difference algebraic systems. Difference indices are also
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closely related to some other important invariants of difference algebraic
systems, for example, the order and the Hilbert-Levin regularity.
Moveover, difference indices can be utilized to solve the difference ideal

membership problem.

The analogous notion for a differential algebraic system is the
differential index, which has been extensively studied for many years.
Actually, there are several definitions of differential indices of a differential
algebraic system in the literature (see for instance [4, 11, 13, 15]), which are
not completely equivalent. However, the corresponding notion of
difference indices for difference algebraic systems has been rarely studied
yet. In [1] and [2], D’Alfonso et al. introduced the notion of ‘B-differential

indices for quasi-regular differential algebraic systems through a family
of pseudo-Jacobian matrices. In this paper, we first give the definition of
difference indices for quasi-regular difference algebraic systems,

following the method used in [1] and [2]. Let us explain it in more details.
Suppose F ={fi, ..., [} is a set of difference polynomials, A is the
difference ideal generated by F. For an element a in a difference field, let

alfl = {a, o(a), ..., " (a)}. Denote by A, the algebraic ideal generated by
fl[]C _1], - fr[k 11 we say the system F'is quasi-regular if for every positive

integer k, the Jacobian matrix of the polynomials fl[k_l], ey fr[k_l] with

respect to the set of variables has full row rank. Through a family of
pseudo-Jacobian matrices, we can give the definition of the difference
index of a quasi-regular difference algebraic system. As usual, its
definition follows from a certain chain which eventually becomes

stationary. In analogy with the case of B-differential indices in [1], the

chain 1s established by the sequence of ranks of certain Jacobian
submatrices associated with the system F. Assume that F is quasi-regular
and o is the difference index of the system F. Then it turns out that for

every i > e —1 (eis the highest order of F), o satisfies:
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Aier1r0 MA; = ANA;,

where A; is the polynomial ring in the variables with orders no more

than i, which meets our expectation for difference indices.

This approach enables us to give an upper bound for the sum of the
order and the difference index of a quasi-regular difference algebraic
system. Basing on this, we can give several applications of difference
indices, including an upper bound of the Hilbert-Levin regularity and an
upper bound of orders for the difference ideal membership problem of a

quasi-regular difference algebraic system.

The paper will be organized as follows. In Section 2, we list some
basic notions from difference algebra which will be used later. In Section 3,
we give the definition of quasi-regular difference algebraic systems. In
Section 4, we introduce a family of pseudo-Jacobian matrices and give the

definition of p-difference indices through studying the ranks of them. In
Section 5, a Jacobi-type upper bound for the sum of the order and the p-
difference index is given. In Section 6, several applications of p-difference

indices are given. In Section 7, we give an example.
2. Preliminaries

A difference ring or c-ring for short (R, c), is a commutative ring R

together with a ring endomorphism o : R — R. If R is a field, then we
call it a difference field, or a o-field for short. We call ¢ the transforming
operator of R and usually omit o from the notation, simply refer to R as

a o-ring or a o-field. A typical example of o-field is the field of rational
functions Q(x) with o(f(x)) = f(x +1). For any a € R, o(a) is called the

transform of a. For neN, c"(a) =" '(s(a)) is called the n-th

transform of a, with the usual assumption c°(a) = a. In this paper, unless

otherwise specified, K is always assumed to be a c-field of characteristic 0.
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Definition 2.1. Let R be a o-ring. An ideal I of R is called a c-ideal if for

a € R, a € I implies o(a) € I. Suppose Iis a c-ideal of R, then I is said to

be

o reflexive if o(a) € I implies a € I for a € R;

o g-prime if I is reflexive and a prime ideal as an algebraic ideal.

For a subset F in a o-ring, we denote by [F] the c-ideal generated
by F. Let K be a o-field. Suppose Y ={y;,...,»,} is a set of
c-indeterminates over K. Then the o-polynomial ring over K in Y is the

polynomial ring in the variables Y, o(Y), o?(Y), .... Itis denoted by

K{Y} = K{y1, ... yn}
and has a natural K-c-algebra structure. For a c-polynomial f e K{Y},
the order of f, denoted by ord(f), is the largest j such that the variable

o/ (y;) appears in f for some i.

For more details about difference algebra, please refer to [16].
3. Quasi-Regular Difference Algebraic Systems

Let Kbe a o-field. Let a be an element in a c-extension field of K, S be
a set of elements in a c-extension field of K, and i € N. Denote o) = ci(a),
all = {a, aW, ..., a(i)}, S = Uaes{a(i)} and Sl = Uaesa[i]. For the
c-indeterminates Y = {y;, ..., ¥, } and i € N, we will treat the elements
of Yl as algebraic indeterminates, and K [Y[i]] is the polynomial ring in
yll,

Throughout the paper, let F ={f;, ..., f,} < K{Y} be a set of

difference polynomials over K and p < K{Y} be a o-prime oc-ideal
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minimal over [F]. Let ¢; := ord,, (f;) which is the order of f; with
respect to y; and denote e = max{e;} for the maximal order of an
element of F. We assume that F actually involves the transforming

operator, ie., e>1. For every ke N, let A, = K[YF]] and 4, =

(P Ty ¢ AL, Weset A = (0).

For every k € N, we write B, for the local ring obtained from A,
after localization at the prime ideal A; Np and let p, = A, 1., P
Since each A, is a polynomial ring, the localizations B, are regular
rings. For the sake of simplicity, we preserve the notation A, for the
ideal generated by fl[k_l], s fr[k’fl] in the local ring B;_;,. and denote

by A the c-ideal generated by F'in K{Y}p.

Definition 3.1. We say the system F' is quasi-regular at p if for
every positive integer k, the Jacobian matrix of the polynomials
fl[kfl], . f,[k_l] with respect to the set of variables Y*~1*¢] has full row

rank over the domain A;_;,, /p; and A is reflexive.

Remark 3.2. If the c-ideal [F] < K{Y} is already a o-prime c-ideal,
the minimality of p implies that p = [F] and all our results remain true
considering the rings A; and the c-ideal [F'] without localization. In this

case if F'is quasi-regular at [F'], we will say simply that F'is quasi-regular.
Proposition 3.3. Let F be a difference algebraic system which is

quasi-regular at p. For k € N*, we have:

1) fl[k_l], s f,[k_l] is a regular sequence in the local ring B;_1,., and
generates a prime ideal.

(2) In the localized ring K{Y},, A agrees with pK{Y},.
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(8) If v denotes the residue field of p, the difference transcendence
degree of v over Kis n —r.
Proof. For the proof, please refer to ([1], Proposition 3), which is for

the differential case, but also suitable for the difference case. O

4. The Definition of p-Difference Index

Following [1], we introduce a family of pseudo-Jacobian matrices

which we need in order to define the concept of difference index. For a

matrix E over K, we use EW to denote the matrix whose elements are

the i-th transform of the corresponding elements of E.

Definition 4.1. Foreach k € N and i e N,,_; (i.e,ieNandi>e-1),

we define the kr x kn -matrix oJ;. ; as follows:

5(F(i7e+1), F(i7e+2)’ s F(l*e+k))

ki - oY, YD)y (i)
(i—e+1)
orT 0
ay(l+l)
aF(i—e+2) aF(i—e+2)
- - 0
— ay(l+l) ay(lfi-z) ,
6F(i—€+]€) aF(l—e‘Fk) N 6F(l—€+k)
oF(P) . . (p) (p)
where each —@ denotes the Jacobian matrix (o(f?, ..., F))/o
oY

(y§q)9 R ygq) ))rxn'

Since the partial derivative operator commutes with the

transforming operator, we have



DIFFERENCE INDICES OF QUASI-REGULAR ... 37

(i—e+1)
( 6Y(e) ) 0 0
(i-e+2) (i—e+2) 0
Iy = (a\Y(e y) (6Y(e) ) :
_off \i-e+k) (i-e+k) OF  \(i-e+k)
(ay(e k+1) ) (GY(e k+2) ) (aY(e )

where we set that i =01if j <O.
ay(J)

Note that we have J;, ;1 = J](Clg and

0
Ji,i
S, = 0
(i-e+k+1) (i—e+k+1) (i—-e+k+1)
(5y(e k) ) (ay(e 1) ) (5y(€) )
(1)
oF (i—e+1)
(aw ) 00
(i—e+2)
_ (ay(e n)
- ) (2
: )
( oF )(i—e+k+1)

oy (e
Definition 4.2. For k € N and i € N;,_;, we define p; ; € N as follows:
® Ho,i =0

o yy ; =dim, ker(Jy ;), for k>1, where J;; denotes the usual
transpose of the matrix J; ; and k denotes the residue field of p. In

particular, p ; = kr - rankH(Jk,i)-
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Proposition 4.3. Let k € N and i € Ny,_y. Then p ; = py j41-

Proof. Since Jj, ;,; = J]glg for any £ € N and any i € N,,_;, we just
need to show that / ]gl)l and o/} ; have the same rank. This is clear since

the maximal nonzero minors of </ ](Clz and JJ}, ; have the same order. O

The previous proposition shows that the sequence p;; does not

depend on the index i. Therefore, in the sequel, we will write p; instead

of i, forany i € Ny,_;.

For k e N, denote by k(A;) the residue field of A, in the ring
Bi_1.e, by k(p;, ) the residue field of p; in the ring A;_;,, and by « the
residue field of p. As an additional hypothesis on the system F, we

assume that the rank of the matrix o; ; over K(A;_i14j+s) does not
depend on s, where s € N. That is to say, the rank of the matrix J} ;

considered alternatively over k(A;_, 147 ), Or over K(P;_p 144 ), OF OVEr K

is always the same.

Proposition 4.4. Let k € N and i € Ny, 1. Then:
(1) The transcendence degree of the field extension
Frac(B; / (Aj—e+141 N B;)) = Frac(B i / Aj_ei14k)
is k(n —r)+ u.
(2) The following identity holds:
trdeg g (Frac(B; / (Aj_es141 N B;))) = (n —7) (@ +1) + er — p..

Proof. For the proof, please refer to [1, Proposition 6], which is for

the differential case, but also suitable for the difference case. O
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Proposition 4.5. The sequence (. ).y s non-decreasing and verifies
the inequality

r
Zmin{k, e—ej} <y < minfk, ejr. 3)
pE=

In particular, there exists ke N, 0<k<e+ Z;zlej, such that
Mg = HE41-

Proof. Fix an index i € N5,_;. From (1), it is easy to see that ker
(J5.:)x {0} < ker(Jj,; ;) for every k e N. Then the fact (p ),y 1s a
non-decreasing sequence follows immediately.

For k e N, since the matrix o} ; has kr rows, it is clear that dim,

ker(Jy ;) < kr. Due to Proposition 4.4, we have trdegg(Frac(B; /
Aies141 N B;)) = (n—7)(i+1)+er —p;. Since A; o1, NB; < ANB;,
trdeg g (Frac(B; / A;_¢414 N B;)) 2 trdeg g (Frac(B; /AN B;)), and hence
trdeg g (Frac(B; /AN B;)) < (n—r)(i +1)+ er —n;. On the other hand,

the fact that the difference dimension of A i1s n-r 1implies

trdeg g (Frac(B; /AN B;)) = (n —r)(i +1). Hence, p; < er holds.

In order to show the other inequality, we observe that, since the order

of i
ay(q )

of the polynomial f; is e;(1 < j < r), the partial derivatives are

zeros for g > e;. So, each polynomial f; induces k& null rows if e -k

j.
+1>e; or e—e; null rows if e-k+1<e; in the matrix J; ;.

Equivalently, f; induces min{k, e —e;} many null rows in the matrix

Jy.i- We conclude that the matrix o, ; has at least 2521 min{k, e —e; }

null rows. Thus, the dimension of the kernel of the transpose matrix
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Jy.i(le, pg) is at least Z;zlmin{k,e—ej}. The second assertion

follows directly from the fact that for every k > e, the inequality (3)

reads z;=1(e —ej) <y <er O

Theorem 4.6. Fix an index i € N,_1. Let ky € N be the minimum of
k such that w1 = w; (this minimum is well defined due to Proposition 4.5).

Then ;. = Mo for every k > k.
Proof. The case for ky = 0 is easy. In this case, p; = 0, which is

equivalent to the fact that the matrix JJ; ; has full row rank. So J}, ; has

full row rank too. Hence p; = 0 for all .

Now, let us assume that ky > 1. It suffices to show that pn; = p;_;
implies pj,q =y, for k > 2. In the sequel, for a vector v € k7 we will

write its description as a block vector v = (vy, ..., v;) with v; € k. Due

to the recursive relation (1), the identity ker(<J ]tc )x{0)" = ker(J]i 1N

{vp,1 = 0} holds in k* for every ke N and so, the equality
Wi = M4 1s equivalent to the inclusion ker(J]tHLi) c {vp4+1 = 0}. Then,
the theorem is a consequence of the following recursive principle:

Claim: For all % e N, ker(J; ;) < {v; = 0} implies ker(Jy,; ;) <
{vp1 = 0}

Proof of the claim. Suppose w = (wy, ..., w;,1)" 1s a solution of
J}+1,i» then by the recursive relation (2), we have (wg, ..., w1 )- J,Elz =0.

Since ker(Jj ;) < {v; = 0}, Jj; can be transformed to a reduced row

echelon matrix with the last k¥ rows and the last £ columns forming an
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identity matrix through the elementary row transformations, and so can

(J ]£1)L )". Tt follows w;,,; = 0 which proves the claim. O

Definition 4.7. By Theorem 4.6, there exists ® € N such that

up < upep for all £ < ® and pj, = pyq for all £ > o. Such o is called
the p-difference index of the system F. If [F] is itself a c-prime c-ideal,

we say simply the difference index of F.

It is obvious from the construction that o is depending on the choice

of p. However, we will prove some properties of ® which meet our

expectation for difference indices.

5. Properties of p-Difference Index

A notable property associated with most differentiation indices is
that they provide an upper bound for the number of derivatives of the
system needed to obtain all the equations that must be satisfied by the

solutions of the system. This case is also suitable for the p-difference

indices defined above.

Theorem 5.1. Suppose that F is a difference algebraic system which

is quasi-regular at p and let o be the p-difference index of the system F.

Then, for every i € Ns,_;1, the equality of ideals

Ai—es1+0 N B = AN B;,
holds in the ring B;. Furthermore, for every i € Ns,_1, the p-difference
index o verifies: ® = min{h e N : A;_,.1,, N B; = AN B;}.

Proof. Fix an index i e N,, ;. Consider the increasing chain
(Aj_es14x N B;j)pey of prime ideals in the ring B;. For every k e N, by

Proposition 4.4,
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trdeg g (Frac(B; / (Aj—es14; N B;))) = (n=r) (i + 1)+ er —pp. (4

Since when k > o, u; is constant, we know that all the prime ideals
Aj_es1+r N B; have the same dimension for % > o. It follows that

(Aj_es14x N B;),on becomes stationary for & > o.

Next we show that the largest ideal of the chain coincides with
A1 B;. One inclusion is obvious. For the other, let f € A B;. There

exist difference polynomials h, a;; € K{Y}, h ¢ p such that

(/)

s
=1 j

Let N be the maximal order of the variables Y appearing in this

equality. Then we have f € Ay_.,1 < By and hence f € Ay_.,1 N B;.
Since the above chain of ideals is stationary for k>, f € A;_o 146 )

B:

;.

In order to prove the second assertion of the theorem, let A; be the
smallest non-negative integer such that A; ,,1,5 (1 B; = A B; for
i € Ny,_;. By the definition of 5h;, the transcendence degrees
trdeg g (Frac(B; / (A;_es1.1 N B;))) coincide for k > h;, and hence by (4),
u; is constant for k£ > h;. This implies ® < h;. Clearly h; < ® by the
minimality of k;. So ® = h;. 0

The following proposition reveals a connection between p; and the

order of p.

Proposition 5.2. Assume that F is a difference algebraic system
which is quasi-regular at p and o is the p -difference index of F. Then

ord(p) = er — pg,-
Proof. Fix an index i € N5,_;. By Theorem 5.1, for £ > o, A;_,.14%

N B; = AN B;. Therefore, by Proposition 4.4 and Theorem 4.6, for

k> o,
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trdeg g (Frac(B; / (AN B;))) = trdeg g (Frac(B; / (Aj_ei141 N B;)))
=(n-r)@+1)+er—p,.

On the other hand, since Frac(B; /(AN B;)) = Frac(4; /(pN 4;)), then
by the property of the dimension polynomial of p (see for instance

[16], Chapter 5),
trdeg g (Frac(B; / (AN B;))) = o-dim(p) (i + 1) + ord(p)
=(n-r)@+1)+ord(p),

where o-dim(p) = n — r is from Proposition 3.3. It follows ord(p) = er — p,,.

O

Jacobi introduced a parameter associated with the orders of
derivations in a differential algebraic system (known as Jacobi number)
and conjectured that the order of the system was bounded by this

number. Cohn generalized this to difference algebraic systems ([10]).

For a difference algebraic system F, we introduce an auxiliary integer

matrix £( := (¢;j),,, whose entries are the orders ¢; of f; with respect
to the variable y; appearing in f; and O if the variable y; does not

appear in f;.
Definition 5.3. Let A € N"*" r < n, be an integer matrix. The Jacobi
number of A is defined to be

r
J(A) = max{ZaiT(i) |T:{, ..., 7} > {1, ..., n} is an injection}.
=1

We have the following the Jacobi-type bound for the sum of the

p-difference index and the order of p. Since the proof is almost identical

to ([1], Theorem 15), we will omit it.
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Theorem 5.4. Suppose F is a difference algebraic system which is

quasi-regular at p. Then, the p-difference index ® of the system F and the

order ord(p) of p satisfy

o + ord(p) < J(€() + e — min{e;; |.
6. Applications of p-Difference Index

6.1. The Hilbert-Levin regularity

For a o-prime c-ideal p, the polynomial ¢(i) = o-dim(p) (i + 1) + ord(p)
is known as the dimension polynomial of p (see for instance [16], Chapter 5).
The minimum of the indices i§; such that o(i)= trdegg
(Frac(A4; /(A; Np))) for all i > iy is called the Hilbert-Levin regularity
of p. The results developed on p-difference indices enable us to give an
upper bound of the Hilbert-Levin regularity of p.

Theorem 6.1. Suppose F is a difference algebraic system which is
quasi-regular at p. Then the Hilbert-Levin regularity of the o-prime

c-ideal p is bounded by e —1.

Proof. Since for all i € N, we have Frac(4; /(A4; Np)) = Frac(B; /
(B; NA)). Therefore, trdegg(Frac(4; /(A; Np))) = trdegg (Frac(B; /
(B;NA))) and so, it is enough to show that, for all i>e-1,
trdeg g (Frac(B; / (B, (1A))) + o-dim(p) = trdeg g (Frac(By., /(B N1A).

Fix an index i > e — 1. Let ® be the p-difference index of the system

F. By Theorem 5.1, we have that AN B; = Aj_¢,146 (N B; and AN B; 4

= A,_¢49+0 (N B;j;1- Thus, by Proposition 4.4, we obtain:

trdeg g (Frac(Bj.1 /(AN Bj11))) = (0 = 1) (i +2) + er — g,
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trdeg g (Frac(B; /(AN B;))) = (n—r)(i +1)+ er — pg.
Hence, the result holds. U
6.2. The ideal membership problem

It is well known that in polynomial algebra, the ideal membership

problem is to decide if a given element f € A belongs to a fixed ideal
I < A for a polynomial ring A, and if the answer is yes, representing [ as

a linear combination with polynomial coefficients of a given set of

generators of L.

The ideal membership problem also exists in differential algebra and
difference algebra. But unlike the case in polynomial algebra, this
problem is undecidable for arbitrary ideals in differential algebra (see [7])
and difference algebra. However, there are special classes of differential
ideals for which the problem is decidable, in particular, the class of

radical differential ideals ([14], see also [3]).

When it comes to the representation problem, the differential case or
the difference case involves another additional ingredient: the minimal
number N such that a given element f of a differential or difference ideal
I can be written as a polynomial linear combination of the generators and
their derivations or transforms up to the order N. The known order
bounds seem to be too big, even for radical ideals (see for instance [8],
where an upper bound in terms of the Ackerman function is given, or [9],
a better and more explicit upper bound). In [1], an order bound for quasi-
regular differential algebraic systems is given, due to the properties of
differential indices defined in the same paper. Now by virtue of Theorem
5.1, we are able to give an order bound for the membership problem of a

quasi-regular difference algebraic system.

The following ideal membership theorem for polynomial rings will be

used.
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Theorem 6.2 ([5], Theorem 5.1). Let K be a field and

g1, .-, 8s € K[y1, ..., y,] be a complete intersection of polynomials
whose total degrees are bounded by an integer d. Let g € K[y;, ..., y,,| be

another polynomial. Then the following conditions are equivalent:

(1) g belongs to the ideal generated by g1, ..., 8s;

(2) there exist polynomials aq, ..., a; such that g = ijlajgj and
deg(ajg;) < d® + deg(g) for 1< j<s.

We have the following effective ideal membership theorem for quasi-
regular difference algebraic systems.

Theorem 6.3. Suppose F is a quasi-regular difference algebraic
system in the sense of Remark 3.2. Let D be an upper bound for the total
degrees of fi, ..., f». Let f € K{Y} be an arbitrary difference polynomial

in the difference ideal [F]. Set N = o + max{-1, ord(f) — e}, where o is

the difference index of F. Then, a representation

f= Z g ijfi(j)

1<i<r,0<j<N

holds in the ring An,., where each polynomial gijfi(j) has total degree
bounded by deg(f) + priv+1),

Proof. The upper bound on the order of transforms of fi, ..., f. is
immediate from Theorem 5.1 by setting i = max{e -1, ord(f)}. The

degree upper bound for the polynomials g;; fi(j ) follows from Proposition

3.3 and Theorem 6.2. O

Remark 6.4. From Theorems 5.1 and 5.4, we have for every

i € Ny,_1, the equality Ais14d(g)-minfe; } NA; =ANA; holds. So it
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suffices to take N = J(&()— min{e;} + max{ord(f), e —1} to get more

explicit upper bounds of the order and the degree in the above ideal

membership problem.
7. An Example

Example 7.1. Notations follow as before. Consider the difference
algebraic system F = {y{l) - 13, yg) — y9y3, ¥1 +¥9 —1} < A = K{y;,
Y2, ¥3}. Then A = [F] is a o-prime c-ideal and F is quasi-regular in the

sense of Remark 3.2. The corresponding matrices JJj o, k =1, 2, 3, ... are

1 0 0
0 1 0
0 O 0
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Since y%i) = ¥1, yg) = ¥o9, yz()’i) =1 in the ring A/A for all i e N, we
have replaced y@, yg), yg) by 1, ¥2, 1, respectively in Jj o for all
ieN. It can be computed that rank(J; ()= 2, rank(Jy ) =4,

rank(Jg ) =7, so iy =1, ug = 2, ug = 2 and hence the difference index

of the system F'is ® = 2. One can check that Ay N 4y = A Ayp.
100
The matrix £y =|0 1 0|. Therefore, by Theorem 5.4, ® + ord(A)

00O
<J(&p)+e—-min{e;} = 2+1-0 = 3. On the other hand, by Proposition
5.2, we have ord(A)=er—p, =3 -2 =1. Therefore, o+ ord(A)= 3,

which coincides with the above upper bound.
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