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Abstract 

This paper is devoted to studying difference indices of quasi-regular difference 
algebraic systems. We give the definition of difference indices through a family 
of pseudo-Jacobian matrices. Some properties of difference indices are proved. 
In particular, a Jacobi-type upper bound for the sum of the difference index and 
the order is given. As applications of difference indices, an upper bound of the 
Hilbert-Levin regularity and an upper bound of the order for the difference ideal 
membership problem are deduced. 

1. Introduction 

The main notion we consider in this paper is difference indices. 
Roughly speaking, the difference index of a difference algebraic system is 
the order of transform we need to apply to the system to obtain the 
relations up to a prescribed order that all the solutions must verify. In 
some sense, difference indices can be regarded as a measure of the 
complexity of difference algebraic systems. Difference indices are also 



JIE WANG 32

closely related to some other important invariants of difference algebraic 
systems, for example, the order and the Hilbert-Levin regularity. 
Moveover, difference indices can be utilized to solve the difference ideal 
membership problem. 

The analogous notion for a differential algebraic system is the 
differential index, which has been extensively studied for many years. 
Actually, there are several definitions of differential indices of a differential 
algebraic system in the literature (see for instance [4, 11, 13, 15]), which are 
not completely equivalent. However, the corresponding notion of 
difference indices for difference algebraic systems has been rarely studied 
yet. In [1] and [2], D’Alfonso et al. introduced the notion of P-differential 

indices for quasi-regular differential algebraic systems through a family 
of pseudo-Jacobian matrices. In this paper, we first give the definition of 
difference indices for quasi-regular difference algebraic systems, 
following the method used in [1] and [2]. Let us explain it in more details. 

Suppose { }rffF ,,1 …=  is a set of difference polynomials, ∆  is the 

difference ideal generated by F. For an element a in a difference field, let 
[ ] { ( ) ( )}.,,, aaaa kk σσ= …  Denote by k∆  the algebraic ideal generated by 

[ ] [ ].,, 11
1

−− kk
rff …  We say the system F is quasi-regular if for every positive 

integer ,k  the Jacobian matrix of the polynomials [ ] [ ]11
1 ,, −− kk

rff …  with 

respect to the set of variables has full row rank. Through a family of 
pseudo-Jacobian matrices, we can give the definition of the difference 
index of a quasi-regular difference algebraic system. As usual, its 
definition follows from a certain chain which eventually becomes 
stationary. In analogy with the case of P-differential indices in [1], the 

chain is established by the sequence of ranks of certain Jacobian 
submatrices associated with the system F. Assume that F is quasi-regular 
and ω  is the difference index of the system F. Then it turns out that for 
every 1−≥ ei  (e is the highest order of F), ω  satisfies: 
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,1 iiei AA ∩∩ ∆=∆ ω++−  

where iA  is the polynomial ring in the variables with orders no more 

than i, which meets our expectation for difference indices. 

This approach enables us to give an upper bound for the sum of the 
order and the difference index of a quasi-regular difference algebraic 
system. Basing on this, we can give several applications of difference 
indices, including an upper bound of the Hilbert-Levin regularity and an 
upper bound of orders for the difference ideal membership problem of a 
quasi-regular difference algebraic system. 

The paper will be organized as follows. In Section 2, we list some 
basic notions from difference algebra which will be used later. In Section 3, 
we give the definition of quasi-regular difference algebraic systems. In 
Section 4, we introduce a family of pseudo-Jacobian matrices and give the 
definition of p-difference indices through studying the ranks of them. In 

Section 5, a Jacobi-type upper bound for the sum of the order and the p-

difference index is given. In Section 6, several applications of p-difference 

indices are given. In Section 7, we give an example. 

2. Preliminaries 

A difference ring or σ-ring for short ( ),, σR  is a commutative ring R 

together with a ring endomorphism .: RR →σ  If R is a field, then we 
call it a difference field, or a σ-field for short. We call σ  the transforming 
operator of R and usually omit σ  from the notation, simply refer to R as 
a σ-ring or a σ-field. A typical example of σ-field is the field of rational 
functions ( )xQ  with ( )( ) ( ).1+=σ xfxf  For any ,Ra ∈  ( )aσ  is called the 

transform of a. For ( ) ( )( )aan nn σσ=σ∈ −1,N  is called the n-th 

transform of a, with the usual assumption ( ) .0 aa =σ  In this paper, unless 

otherwise specified, K is always assumed to be a σ-field of characteristic 0. 
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Definition 2.1. Let R be a σ-ring. An ideal I of R is called a σ-ideal if for 
IaRa ∈∈ ,  implies ( ) .Ia ∈σ  Suppose I is a σ-ideal of R, then I is said to 

be 

● reflexive if ( ) Ia ∈σ  implies Ia ∈  for ;Ra ∈  

● σ-prime if I is reflexive and a prime ideal as an algebraic ideal. 

For a subset F in a σ-ring, we denote by [ ]F  the σ-ideal generated    

by F. Let K be a σ-field. Suppose { }nyy ,,1 …=Y  is a set of                          

σ-indeterminates over K. Then the σ-polynomial ring over K in Y  is the 

polynomial ring in the variables ( ) ( ) .,,, 2 …YYY σσ  It is denoted by 

{ } { }nyyKK ,,1 …=Y  

and has a natural K-σ-algebra structure. For a σ-polynomial { },YKf ∈  

the order of f, denoted by ( ),ord f  is the largest j such that the variable 

( )i
j yσ  appears in f for some i. 

For more details about difference algebra, please refer to [16]. 

3. Quasi-Regular Difference Algebraic Systems 

Let K be a  field.-σ Let a be an element in a σ-extension field of K, S be 

a set of elements in a σ-extension field of K, and .N∈i  Denote ( ) ( ),aa ii σ=  

[ ] { ( ) ( )} ( ) { ( )}i
Sa

iii aSaaaa ∈== ∪… ,,,, 1  and [ ] [ ].i
Sa

i aS ∈= ∪  For the 

σ-indeterminates { }nyy ,,1 …=Y  and ,N∈i  we will treat the elements 

of [ ]iY  as algebraic indeterminates, and [ [ ] ]iK Y  is the polynomial ring in 

[ ].iY  

Throughout the paper, let { } { }YKffF r ⊂= ,,1 …  be a set of 

difference polynomials over K and { }YK⊆p  be a σ-prime σ-ideal 
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minimal over [ ].F  Let ( )iyij fjord:=  which is the order of if  with 

respect to jy  and denote { }ije max=  for the maximal order of an 

element of F. We assume that F actually involves the transforming 

operator, i.e., .1≥e  For every ,N∈k  let [ [ ] ]kk YKA =:  and =∆ :k  

( [ ] [ ] ) .,, 1
11

1 er Aff +−
−− ⊆ k
kk …  We set ( ).00 =∆  

For every ,N∈k  we write kB  for the local ring obtained from kA  

after localization at the prime ideal p∩kA  and let .: 1 pp ∩eA +−= kk  

Since each kA  is a polynomial ring, the localizations kB  are regular 

rings. For the sake of simplicity, we preserve the notation k∆  for the 

ideal generated by [ ] [ ]11
1 ,, −− kk

rff …  in the local ring eB +−1k  and denote 

by ∆  the σ-ideal generated by F in { } .pYK  

Definition 3.1. We say the system F is quasi-regular at p  if for 

every positive integer ,k  the Jacobian matrix of the polynomials  
[ ] [ ]11

1 ,, −− kk
rff …  with respect to the set of variables [ ]e+−1kY  has full row 

rank over the domain kk peA +−1  and ∆  is reflexive. 

Remark 3.2. If the σ-ideal [ ] { }YKF ⊆  is already a σ-prime σ-ideal, 

the minimality of p  implies that [ ]F=p  and all our results remain true 

considering the rings kA  and the σ-ideal [ ]F  without localization. In this 

case if F is quasi-regular at [ ],F  we will say simply that F is quasi-regular. 

Proposition 3.3. Let F be a difference algebraic system which is 

quasi-regular at .p  For ,∗∈ Nk  we have: 

(1) [ ] [ ]11
1 ,, −− kk

rff …  is a regular sequence in the local ring eB +−1k  and 

generates a prime ideal. 

(2) In the localized ring { } ∆,pYK  agrees with { } .pp YK  
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(3) If κ  denotes the residue field of ,p  the difference transcendence 

degree of κ  over K is .rn −  

Proof. For the proof, please refer to ([1], Proposition 3), which is for 
the differential case, but also suitable for the difference case.   

4. The Definition of p-Difference Index 

Following [1], we introduce a family of pseudo-Jacobian matrices 
which we need in order to define the concept of difference index. For a 

matrix E over K, we use ( )iE  to denote the matrix whose elements are 
the i-th transform of the corresponding elements of E. 

Definition 4.1. For each N∈k  and ( ),1and.,i.e1 −≥∈∈ −≥ eiii e NN  

we define the nr kk × -matrix iJ ,k  as follows: 

( ( ) ( ) ( ) )
( ( ) ( ) ( ) )k

k

k +++

+−+−+−

∂

∂
= iii

eieiei
i

FFFJ
YYY ,,,
,,,: 21

21
,

…
…  

( )

( )
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )
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0

00
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2

2

1

2
1

1
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=
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+
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k

kkk

i

ei

i

ei

i

ei

i

ei

i

ei
i

ei

FFF

FF

F

YYY

YY

Y

 

where each 
( )

( )q

pF
Y∂

∂  denotes the Jacobian matrix ( ( ( ) ( ) ) ∂∂ p
r

p ff ,,1 …  

( ( ) ( ) )) .,,1 nr
q

n
q yy ×…  

Since the partial derivative operator commutes with the 
transforming operator, we have 
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where we set that ( ) 0=
∂

∂
j

F
Y

 if .0<j  

Note that we have ( )1
,1, ii JJ kk =+  and 

( ( ) )
( ) ( ( ) )( ) ( ( ) )( )
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 (2) 

Definition 4.2. For N∈k  and ,1−≥∈ ei N  we define N∈µ i,k  as follows: 

● ;0:,0 =µ i  

● ( ),kerdim: ,,
τ

κ ii Jkk =µ  for ,1≥k  where τ
iJ ,k  denotes the usual 

transpose of the matrix iJ ,k  and κ  denotes the residue field of .p  In 

particular, ( ).rank ,, ii Jr kk k κ−=µ  
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Proposition 4.3. Let N∈k  and .1−≥∈ ei N  Then .1,, +µ=µ ii kk  

Proof. Since ( )1
,1, ii JJ kk =+  for any N∈k  and any ,1−≥∈ ei N  we just 

need to show that ( )1
, iJk  and iJ ,k  have the same rank. This is clear since 

the maximal nonzero minors of ( )1
, iJk  and iJ ,k  have the same order.   

The previous proposition shows that the sequence i,kµ  does not 

depend on the index i. Therefore, in the sequel, we will write kµ  instead 

of ,, ikµ  for any .1−≥∈ ei N  

For ,N∈k  denote by ( )k∆κ  the residue field of k∆  in the ring 

,1 eB +−k  by ( )kpκ  the residue field of kp  in the ring eA +−1k  and by κ  the 

residue field of .p  As an additional hypothesis on the system F, we 

assume that the rank of the matrix iJ ,k  over ( )sei +++−∆ k1κ  does not 

depend on s, where .N∈s  That is to say, the rank of the matrix iJ ,k  

considered alternatively over ( ),1 k++−∆ eiκ  or over ( ),1 k++−eipκ  or over κ  

is always the same. 

Proposition 4.4. Let N∈k  and .1−≥∈ ei N  Then: 

(1) The transcendence degree of the field extension 

( ( )) ( )kkk ++−+++− ∆∆ 11 FracFrac eiiieii BBB ∩  

is ( ) .kk µ+− rn  

(2) The following identity holds: 

( ( ( ))) ( ) ( ) .1Fracegtrd 1 kk µ−++−=∆ ++− erirnBB ieiiK ∩  

Proof. For the proof, please refer to [1, Proposition 6], which is for 
the differential case, but also suitable for the difference case.   
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Proposition 4.5. The sequence ( ) N∈µ kk  is non-decreasing and verifies 

the inequality 

{ } { } .,min,min
1

reee j

r

j
kk k ≤µ≤−∑

=

  (3) 

In particular, there exists ,0, 1 j
r
j ee ∑ =

+≤≤∈ kk N  such that  

.1+µ=µ kk  

Proof. Fix an index .1−≥∈ ei N  From (1), it is easy to see that ker  

( ) { } ( )ττ
i

r
i JJ ,1, ker0 +⊆× kk  for every .N∈k  Then the fact ( ) N∈µ kk  is a 

non-decreasing sequence follows immediately. 

For ,N∈k  since the matrix iJ ,k  has rk  rows, it is clear that κdim  

( ) .ker , rJ i kk ≤τ  Due to Proposition 4.4, we have ( ( iK BFractrdeg  

)) ( ) ( ) .11 kk µ−++−=∆ ++− erirnBiei ∩  Since ,1 iiei BB ∩∩ ∆⊆∆ ++− k  

( ( )) ( ( )),FractrdegFractrdeg 1 iiKieiiK BBBB ∩∩ ∆≥∆ ++− k  and hence 

( ( )) ( ) ( ) .1Fractrdeg kµ−++−≤∆ erirnBB iiK ∩  On the other hand, 

the fact that the difference dimension of ∆  is rn −  implies 

( ( )) ( ) ( ).1Fractrdeg +−≥∆ irnBB iiK ∩  Hence, er≤µk  holds. 

In order to show the other inequality, we observe that, since the order 

of the polynomial jf  is ( ),1 rje j ≤≤  the partial derivatives ( )q
jf

Y∂
∂

 are 

zeros for .jeq >  So, each polynomial jf  induces k  null rows if k−e  

je>+ 1  or jee −  null rows if jee ≤+− 1k  in the matrix ., iJk  

Equivalently, jf  induces { }jee −,min k  many null rows in the matrix 

., iJk  We conclude that the matrix iJ ,k  has at least { }j
r
j ee −∑ =

,min1 k  

null rows. Thus, the dimension of the kernel of the transpose matrix 
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( )kk µi.e.,,
τ

iJ  is at least { }.,min1 j
r
j ee −∑ =

k  The second assertion 

follows directly from the fact that for every ,e≥k  the inequality (3) 

reads ( ) .1 eree j
r
j ≤µ≤−∑ = k    

Theorem 4.6. Fix an index .1−≥∈ ei N  Let N∈0k  be the minimum of 

k  such that kk µ=µ +1  (this minimum is well defined due to Proposition 4.5). 

Then 0kk µ=µ  for every .0kk ≥  

Proof. The case for 00 =k  is easy. In this case, ,01 =µ  which is 

equivalent to the fact that the matrix iJ ,1  has full row rank. So iJ ,k  has 

full row rank too. Hence 0=µk  for all .k  

Now, let us assume that .10 ≥k  It suffices to show that 1−µ=µ kk  

implies kk µ=µ +1  for .2≥k  In the sequel, for a vector lrv κ∈  we will 

write its description as a block vector ( )lvvv ,,1 …=  with .r
jv κ∈  Due 

to the recursive relation (1), the identity ( ) { } ( ) ∩t
i

rt
i JJ ,1, ker0ker +=× kk  

{ }0=+1kv  holds in ( )r1+kκ  for every N∈k  and so, the equality  

1+µ=µ kk  is equivalent to the inclusion ( ) { }.ker 1,1 0=⊆ ++ kk vJ t
i  Then, 

the theorem is a consequence of the following recursive principle: 

Claim: For all ( ) { }0=⊆∈ kkk vJ i
τ
,ker,N  implies ( ) ⊆+

τ
iJ ,1ker k  

{ }.1 0=+kv  

Proof of the claim. Suppose ( )τ11 ,, += kwww …  is a solution of 

,,1
τ

iJ +k  then by the recursive relation (2), we have ( ) ( ) .0,, 1
,12 =⋅+ iJww kk…  

Since ( ) { } ττ
ii JvJ ,, ,ker kkk 0=⊆  can be transformed to a reduced row 

echelon matrix with the last k  rows and the last k  columns forming an 
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identity matrix through the elementary row transformations, and so can 

( ( ) ) .1
,

τ
iJk  It follows 0=+1kw  which proves the claim.   

Definition 4.7. By Theorem 4.6, there exists N∈ω  such that  

1+µ<µ kk  for all ω<k  and 1+µ=µ kk  for all .ω≥k  Such ω  is called 

the p-difference index of the system F. If [ ]F  is itself a σ-prime σ-ideal, 

we say simply the difference index of F. 

It is obvious from the construction that ω  is depending on the choice 

of .p  However, we will prove some properties of ω  which meet our 

expectation for difference indices. 

5. Properties of p-Difference Index 

A notable property associated with most differentiation indices is 
that they provide an upper bound for the number of derivatives of the 
system needed to obtain all the equations that must be satisfied by the 
solutions of the system. This case is also suitable for the p-difference 

indices defined above. 

Theorem 5.1. Suppose that F is a difference algebraic system which 
is quasi-regular at p  and let ω  be the p-difference index of the system F. 

Then, for every ,1−≥∈ ei N  the equality of ideals 

,1 iiei BB ∩∩ ∆=∆ ω++−  

holds in the ring .iB  Furthermore, for every ,1−≥∈ ei N  the p-difference 

index ω  verifies: { }.:min 1 iihei BBh ∩∩ ∆=∆∈=ω ++−N  

Proof. Fix an index .1−≥∈ ei N  Consider the increasing chain 

( ) N∈++−∆ kk iei B∩1  of prime ideals in the ring .iB  For every ,N∈k  by 

Proposition 4.4, 
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( ( ( ))) ( ) ( ) .1Fractrdeg 1 kk µ−++−=∆ ++− erirnBB ieiiK ∩   (4) 

Since when kk µω≥ ,  is constant, we know that all the prime ideals 

iei B∩k++−∆ 1  have the same dimension for .ω≥k  It follows that 
( ) N∈++−∆ kk iei B∩1  becomes stationary for .ω≥k  

Next we show that the largest ideal of the chain coincides with 
.iB∩∆  One inclusion is obvious. For the other, let .iBf ∩∆∈  There 

exist difference polynomials { } p∈/∈ hKah lj ,, Y  such that 

( )
.

1
h
fa

f
j

llj

j

r

l
∑∑

=

=  

Let N be the maximal order of the variables Y  appearing in this 
equality. Then we have NeN Bf ⊆∆∈ +− 1  and hence .1 ieN Bf ∩+−∆∈  
Since the above chain of ideals is stationary for ∩ω++−∆∈ω≥ 1, eifk  

.iB  

In order to prove the second assertion of the theorem, let ih  be the 
smallest non-negative integer such that iihei BBi ∩∩ ∆=∆ ++− 1  for 

.1−≥∈ ei N  By the definition of ,ih  the transcendence degrees 
( ( ( )))ieiiK BB ∩k++−∆ 1Fractrdeg  coincide for ,ih≥k  and hence by (4), 

kµ  is constant for .ih≥k  This implies .ih≤ω  Clearly ω≤ih  by the 
minimality of .ih  So .ih=ω    

The following proposition reveals a connection between kµ  and the 
order of .p  

Proposition 5.2. Assume that F is a difference algebraic system 
which is quasi-regular at p  and ω  is the p -difference index of F. Then 

( ) .ord ωµ−= erp  

Proof. Fix an index .1−≥∈ ei N  By Theorem 5.1, for kk ++−∆ω≥ 1, ei  

.ii BB ∩∩ ∆=  Therefore, by Proposition 4.4 and Theorem 4.6, for 
,ω≥k  
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( ( ( ))) ( ( ( )))ieiiKiiK BBBB ∩∩ k++−∆=∆ 1FractrdegFractrdeg  

( ) ( ) .1 kµ−++−= erirn  

On the other hand, since ( ( )) ( ( )),FracFrac iiii AABB ∩∩ p=∆  then 

by the property of the dimension polynomial of p  (see for instance        

[16], Chapter 5), 

( ( ( ))) ( ) ( ) ( )pp ord1dim-Fractrdeg ++σ=∆ iBB iiK ∩  

( ) ( ) ( ),ord1 p++−= irn  

where ( ) rn −=σ pdim-  is from Proposition 3.3. It follows ( ) .ord ωµ−= erp   

  

Jacobi introduced a parameter associated with the orders of 
derivations in a differential algebraic system (known as Jacobi number) 
and conjectured that the order of the system was bounded by this 
number. Cohn generalized this to difference algebraic systems ([10]). 

For a difference algebraic system F, we introduce an auxiliary integer 
matrix ( ) nrij ×= :0E  whose entries are the orders ij  of if  with respect 

to the variable jy  appearing in if  and 0 if the variable jy  does not 

appear in .if  

Definition 5.3. Let ,, nrA nr ≤∈ ×N  be an integer matrix. The Jacobi 

number of A is defined to be 

( ) { ( ) { } { } }.injectionanis,,1,,1:|max:
1

nraAJ ii

r

i
…… →= ∑

=

ττ  

We have the following the Jacobi-type bound for the sum of the                 
p-difference index and the order of .p  Since the proof is almost identical 

to ([1], Theorem 15), we will omit it. 
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Theorem 5.4. Suppose F is a difference algebraic system which is 
quasi-regular at .p  Then, the p-difference index ω  of the system F and the 

order ( )pord  of p  satisfy 

( ) ( ) { }.minord 0 ijeJ −+≤+ω Ep  

6. Applications of p-Difference Index 

6.1. The Hilbert-Levin regularity 

For a σ-prime σ-ideal ,p  the polynomial ( ) ( ) ( ) ( )pp ord1dim- ++σ=ϕ ii  

is known as the dimension polynomial of p  (see for instance [16], Chapter 5). 

The minimum of the indices 0i  such that ( ) Ki trdeg=ϕ  

( ( ( )))p∩ii AAFrac  for all 0ii ≥  is called the Hilbert-Levin regularity 

of .p  The results developed on p-difference indices enable us to give an 

upper bound of the Hilbert-Levin regularity of .p  

Theorem 6.1. Suppose F is a difference algebraic system which is 
quasi-regular at .p  Then the Hilbert-Levin regularity of the σ-prime         

σ-ideal p  is bounded by .1−e  

Proof. Since for all ,N∈i  we have ( ( )) ( iii BAA FracFrac =p∩  

( )).∆∩iB  Therefore, ( ( ( ))) ( ( iKiiK BAA FractrdegFractrdeg =p∩  

( )))∆∩iB  and so, it is enough to show that, for all ,1−≥ ei  

( ( ( ))) ( ) ( ( ( ))).Fractrdegdim-Fractrdeg 11 ∆=σ+∆ ++ ∩∩ iiKiiK BBBB p  

Fix an index .1−≥ ei  Let ω  be the p-difference index of the system 

F. By Theorem 5.1, we have that ieii BB ∩∩ ω++−∆=∆ 1  and 1+∆ iB∩  

.12 +ω++−∆= iei B∩  Thus, by Proposition 4.4, we obtain: 

( ( ( ))) ( ) ( ) ,2Fractrdeg 11 ω++ µ−++−=∆ erirnBB iiK ∩  
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( ( ( ))) ( ) ( ) .1Fractrdeg ωµ−++−=∆ erirnBB iiK ∩  

Hence, the result holds.   

6.2. The ideal membership problem 

It is well known that in polynomial algebra, the ideal membership 
problem is to decide if a given element Af ∈  belongs to a fixed ideal 

AI ⊆  for a polynomial ring A, and if the answer is yes, representing f as 

a linear combination with polynomial coefficients of a given set of 
generators of I. 

The ideal membership problem also exists in differential algebra and 
difference algebra. But unlike the case in polynomial algebra, this 
problem is undecidable for arbitrary ideals in differential algebra (see [7]) 
and difference algebra. However, there are special classes of differential 
ideals for which the problem is decidable, in particular, the class of 
radical differential ideals ([14], see also [3]). 

When it comes to the representation problem, the differential case or 
the difference case involves another additional ingredient: the minimal 
number N such that a given element f of a differential or difference ideal 
I can be written as a polynomial linear combination of the generators and 
their derivations or transforms up to the order N. The known order 
bounds seem to be too big, even for radical ideals (see for instance [8], 
where an upper bound in terms of the Ackerman function is given, or [9], 
a better and more explicit upper bound). In [1], an order bound for quasi-
regular differential algebraic systems is given, due to the properties of 
differential indices defined in the same paper. Now by virtue of Theorem 
5.1, we are able to give an order bound for the membership problem of a 
quasi-regular difference algebraic system. 

The following ideal membership theorem for polynomial rings will be 
used. 
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Theorem 6.2 ([5], Theorem 5.1). Let K be a field and 
[ ]ns yyKgg ,,,, 11 …… ∈  be a complete intersection of polynomials 

whose total degrees are bounded by an integer d. Let [ ]nyyKg ,,1 …∈  be 

another polynomial. Then the following conditions are equivalent: 

(1) g belongs to the ideal generated by ;,,1 sgg …  

(2) there exist polynomials saa ,,1 …  such that jj
s
j gag ∑ =

= 1  and 

( ) ( )gdga s
jj degdeg +≤  for .1 sj ≤≤  

We have the following effective ideal membership theorem for quasi-
regular difference algebraic systems. 

Theorem 6.3. Suppose F is a quasi-regular difference algebraic 
system in the sense of Remark 3.2. Let D be an upper bound for the total 
degrees of .,,1 rff …  Let { }YKf ∈  be an arbitrary difference polynomial 

in the difference ideal [ ].F  Set ( ){ },ord,1max efN −−+ω=  where ω  is 

the difference index of F. Then, a representation 

( )j
iij

Njri
fgf ∑

≤≤≤≤

=
0,1

 

holds in the ring ,eNA +  where each polynomial ( )j
iij fg  has total degree 

bounded by ( ) ( ).deg 1++ NrDf  

Proof. The upper bound on the order of transforms of rff ,,1 …  is 

immediate from Theorem 5.1 by setting ( ){ }.ord,1max fei −=  The 

degree upper bound for the polynomials ( )j
iij fg  follows from Proposition 

3.3 and Theorem 6.2.   

Remark 6.4. From Theorems 5.1 and 5.4, we have for every 
,1−≥∈ ei N  the equality ( ) { } iiJi AAij ∩∩ ∆=∆ −++ min1 0E  holds. So it 
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suffices to take ( ) { } ( ){ }1,ordmaxmin0 −+−= efJN ijE  to get more 

explicit upper bounds of the order and the degree in the above ideal 
membership problem. 

7. An Example 

Example 7.1. Notations follow as before. Consider the difference 

algebraic system { ( ) ( ) } { ,1,, 12132
1

231
1

1 yKAyyyyyyyyF =⊆−+−−=  

}., 32 yy  Then [ ]F=∆  is a σ-prime σ-ideal and F is quasi-regular in the 

sense of Remark 3.2. The corresponding matrices …,3,2,1,0, =kkJ  are 

.

000011

01010

00101

000011

01010

00101

000011

01010

00101

000

010

001

2

1

2

1

2

1









































































−−

−−

−−

−−

−−

−−

y

y

y

y

y

y
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Since ( ) ( ) ( ) 1,, 32211 === iii yyyyy  in the ring ∆A  for all ,N∈i  we 

have replaced ( ) ( ) ( )iii yyy 321 ,,  by ,1,, 21 yy  respectively in 0,kJ  for all 

.N∈i  It can be computed that ( ) ( ) ,4rank,2rank 0,20,1 == JJ  

( ) ,7rank 0,3 =J  so 2,2,1 321 =µ=µ=µ  and hence the difference index 

of the system F is .2=ω  One can check that .002 AA ∩∩ ∆=∆  

The matrix .

000

010

001

0





















=E  Therefore, by Theorem 5.4, ( )∆+ω ord  

( ) { } .3012min0 =−+=−+≤ ijeJ E  On the other hand, by Proposition 

5.2, we have ( ) .123ord =−=µ−=∆ ωer  Therefore, ( ) ,3ord =∆+ω  

which coincides with the above upper bound. 
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